Enzyme controlled glucose auto-delivery for high cell density cultivations in microplates and shake flasks
نویسندگان
چکیده
BACKGROUND Here we describe a novel cultivation method, called EnBasetrade mark, or enzyme-based-substrate-delivery, for the growth of microorganisms in millilitre and sub-millilitre scale which yields 5 to 20 times higher cell densities compared to standard methods. The novel method can be directly applied in microwell plates and shake flasks without any requirements for additional sensors or liquid supply systems. EnBase is therefore readily applicable for many high throughput applications, such as DNA production for genome sequencing, optimisation of protein expression, production of proteins for structural genomics, bioprocess development, and screening of enzyme and metagenomic libraries. RESULTS High cell densities with EnBase are obtained by applying the concept of glucose-limited fed-batch cultivation which is commonly used in industrial processes. The major difference of the novel method is that no external glucose feed is required, but glucose is released into the growth medium by enzymatic degradation of starch. To cope with the high levels of starch necessary for high cell density cultivation, starch is supplied to the growing culture suspension by continuous diffusion from a storage gel.Our results show that the controlled enzyme-based supply of glucose allows a glucose-limited growth to high cell densities of OD600 = 20 to 30 (corresponding to 6 to 9 g l-1 cell dry weight) without the external feed of additional compounds in shake flasks and 96-well plates. The final cell density can be further increased by addition of extra nitrogen during the cultivation. Production of a heterologous triosphosphate isomerase in E. coli BL21(DE3) resulted in 10 times higher volumetric product yield and a higher ratio of soluble to insoluble product when compared to the conventional production method. CONCLUSION The novel EnBase method is robust and simple-to-apply for high cell density cultivation in shake flasks and microwell plates. The potential of the system is that the microbial growth rate and oxygen consumption can be simply controlled by the amount (and principally also by the activity) of the starch-degrading enzyme. This solves the problems of uncontrolled growth, oxygen limitation, and severe pH drop in shaken cultures. In parallel the method provides the basis for enhanced cell densities. The feasibility of the new method has been shown for 96-well plates and shake flasks and we believe that it can easily be adapted to different microwell and deepwell plate formats and shake flasks. Therefore EnBase will be a helpful tool especially in high throughput applications.
منابع مشابه
Controlling pH in shake flasks using polymer-based controlled-release discs with pre-determined release kinetics
BACKGROUND There are significant differences in the culture conditions between small-scale screenings and large-scale fermentation processes. Production processes are usually conducted in fed-batch cultivation mode with active pH-monitoring and control. In contrast, screening experiments in shake flasks are usually conducted in batch mode without active pH-control, but with high buffer concentr...
متن کاملScale-up bioprocess development for production of the antibiotic valinomycin in Escherichia coli based on consistent fed-batch cultivations
BACKGROUND Heterologous production of natural products in Escherichia coli has emerged as an attractive strategy to obtain molecules of interest. Although technically feasible most of them are still constrained to laboratory scale production. Therefore, it is necessary to develop reasonable scale-up strategies for bioprocesses aiming at the overproduction of targeted natural products under indu...
متن کاملA novel fed-batch based cultivation method provides high cell-density and improves yield of soluble recombinant proteins in shaken cultures
BACKGROUND Cultivations for recombinant protein production in shake flasks should provide high cell densities, high protein productivity per cell and good protein quality. The methods described in laboratory handbooks often fail to reach these goals due to oxygen depletion, lack of pH control and the necessity to use low induction cell densities. In this article we describe the impact of a nove...
متن کاملHigh-throughput strategies for penicillin G acylase production in rE. coli fed-batch cultivations
BACKGROUND Penicillin G acylase (PGA) is used industrially to catalyze the hydrolysis of penicillin G to obtain 6-aminopenicillanic acid. In Escherichia coli, the most-studied microorganism for PGA production, this enzyme accumulates in the periplasmic cell space, and temperature plays an important role in the correct synthesis of its subunits. RESULTS This work investigates the influence of ...
متن کاملHigh-yield production of biologically active recombinant protein in shake flask culture by combination of enzyme-based glucose delivery and increased oxygen transfer
This report describes the combined use of an enzyme-based glucose release system (EnBase®) and high-aeration shake flask (Ultra Yield Flask™). The benefit of this combination is demonstrated by over 100-fold improvement in the active yield of recombinant alcohol dehydrogenase expressed in E. coli. Compared to Terrific Broth and ZYM-5052 autoinduction medium, the EnBase system improved yield mai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microbial Cell Factories
دوره 7 شماره
صفحات -
تاریخ انتشار 2008